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Low-dimensional empirical Galerkin models are developed for spatially evolving
laminar and transitional shear layers, based on a Karhunen–Loève decomposition
of incompressible two- and three-dimensional Navier–Stokes simulations. It is shown
that the key to an accurate Galerkin model is a novel analytical pressure-term
representation. The effect of the pressure term is elucidated by a modal energy-flow
analysis in a mixing layer, which generalizes the framework developed by Rempfer
(1991). In convectively unstable shear layers, it is shown in particular that neglecting
small energy terms leads to large amplitude errors in the Galerkin model. The effect
of the pressure term and small neglected energy flows is very important for a two-
dimensional mixing layer, is less pronounced for the three-dimensional analogue, and
can be considered as small in an absolutely unstable wake flow.

1. Introduction
In this study, a low-dimensional empirical¶ Galerkin model of the laminar and

transitional shear layer is proposed. The oncoming flow is represented by a tanh-
profile, perturbed by a small, spatially growing eigenmode obtained from a local linear
stability analysis. Since instabilities of tanh-profiles have been extremely well-studied
this flow is ready for the current additional analysis. This study is motivated by the
open questions still remaining in the area of low-dimensional models used in flow
control applications.

In the past, low-dimensional modelling of coherent structures was primarily
considered as a means for testing physical understanding. Examples include
Townsend’s (1956) rigorous analytical study of coherent structure dynamics in
turbulence, Lorenz’s (1963) celebrated three-mode model of Rayleigh–Bénard convec-
tion, and the ‘Cornell model’ (Aubry et al. 1988) of the turbulent boundary layer.
The Cornell model has inspired many subsequent empirical Galerkin models with

† Author to whom correspondence should be addressed: Bernd.R.Noack@tu-berlin.de
‡ Present address: Division of Engineering, Colorado School of Mines, Golden, CO 80401, USA.
¶ The terminology of Rempfer (1991) is adopted in which Galerkin models based on a

Karhunen–Loève decomposition are called ‘empirical,’ since their construction requires a priori
knowledge from the full Navier–Stokes solution or from experiment.
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Karhunen–Loève decompositions (see, for instance, Holmes, Lumley & Berkooz
1998). Meanwhile, many low-dimensional modelling efforts are targeting flow control
applications for two main reasons. On the one hand, such ‘plant models’ allow the use
of all the powerful tools of control theory and, on the other hand, quick exploratory
actuation studies are made possible by the simplicity of the model.

A large number of flow control problems are strongly related to the manipulation of
coherent structures in shear layers (Gad-el-Hak 1996, 2000). Engine-related examples
include separation control of a diffuser (Coller et al. 2000), the control of high-
frequency jet noise near the engine exhaust (Narayanan, Noack & Meiburg 2002),
afterburner screech due to mixing processes in the shear layer from flame holders
(Rogers & Marble 1954), and the enhancement of combustor mixing in a dead-water
region (Noack et al. 2004a).

A first class of low-dimensional coherent-structure representations of shear-layer
dynamics are the vortex models, which have not surprisingly proven to be particularly
robust and successful (Coats 1997). Their success began with Rosenhead’s (1930) first
point-vortex simulation of the temporally growing two-dimensional shear layer and
continues with Ashurst & Meiburg’s (1988) pioneering vortex-filament computation.
The inviscid nature of the Kelvin–Helmholtz instability and the Lagrangian vortex
dynamics are ideal for the application of vortex methods. Some recent control
strategies are based on confined vortex models of actuated flow and on efficient
methods of nonlinear control theory (Noack et al. 2004a; Tadmor & Banaszuk 2002).
However, the hybrid nature of open vortex models with continuous production,
merging and elimination of vortices complicates the application of control theory
methods (Pastoor et al. 2003).

Another class of models is formed by low-dimensional Galerkin models which,
for the shear layer, appear to be more challenging to construct than corresponding
vortex models. One reason for this challenge is the Galerkin ansatz itself, i.e. the
superposition of a few (global) modes to represent the convective amplification of
Kelvin–Helmholtz-type vorticity concentrations. For the turbulent jet and mixing
layer, Karhunen–Loève decompositions (Delville et al. 1999) and Galerkin models
(Rajaae, Karlsson & Sirovich 1994; Ukeiley et al. 2001) have been constructed from
experimental data. Delville’s group has pioneered the development of similar low-
dimensional representations of turbulent mixing layers from large-eddy simulation
data (Cordier, Tenaud & Delville 1998). These models require empirical assumptions,
for instance an eddy-viscosity model to incorporate the effect of neglected turbulent
fluctuations, the Cornell model for the base-flow variation, or periodicity in the
streamwise direction to complete experimental data. In the category of absolutely
unstable flows, a 10-dimensional Galerkin model has recently been developed by Wee
et al. (2002) for a two-dimensional shear layer behind a backward-facing step at
Re= 5000. The present study completes the spectrum of low-dimensional shear-layer
models in the laminar and transitional regime in which no empirical input beyond
the Karhunen–Loève modes is needed.

In control applications, actuation prediction with empirical Galerkin models is still
in its infancy. Examples include the volume-force actuation for skin-friction reduction
in a turbulent boundary layer by Blossey & Lumley (1998), another volume-force
application for the suppression of vortex shedding by Gerhard et al. (2003), and a
4-mode model of an acoustic actuator by Rediniotis, Ko & Kurdila (2002).

In the present study, it is demonstrated how the accuracy of empirical Galerkin
models for shear flows can be significantly improved by introducing an appro-
priate pressure-term representation. The manuscript is organized as follows: In § 2 a
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Figure 1. Coordinate system and velocity profile.

low-dimensional Galerkin model enhanced by a novel pressure-term representation
is described. This model is then used to describe two-dimensional laminar Kelvin–
Helmholtz vortices in § 3, and a transitional shear layer in § 4. The main findings and
the potential implications for other flows are summarized in § 5.

2. Low-dimensional modelling
In this section, the low-dimensional modelling process from Navier–Stokes

simulations to Galerkin models is described. In § 2.1, the flow configuration and
Navier–Stokes solver are outlined. The local linear stability stability analysis in § 2.2
provides the unsteady inflow condition of the simulation. In § 2.3, a straightforward
empirical Galerkin model is constructed from the simulation data and a new model
for the pressure term is proposed in § 2.4. Finally, energy balance equations for each
mode are derived in § 2.5.

2.1. Navier–Stokes simulation of the spatially evolving shear layer

The flow is described in a Cartesian coordinate system x, y, z, where the positive x-axis
is aligned with the mean flow, the positive y-axis with the gradient of the streamwise
velocity and the negative z-axis with the vorticity (see figure 1). The origin 0 of the
coordinate system is in the centreplane of the upper and lower streams. Locations
are defined by the vector x := (x, y, z), the unit vectors in the x-, y-, and z-directions
are denoted by êx , êy and êz, respectively, and the corresponding components of the
velocity vector u by u, v and w.

The shear layer is characterized by the (unperturbed) velocity U1 of the fast upper
stream, far away from the shear layer, the velocity U2 of the slow lower stream, the
vorticity thickness δv of the shear layer, and the kinematic viscosity ν of the fluid
(Monkewitz & Huerre 1982). For convenience, the shear-layer thickness δω = δv/2 is
introduced as reference scale for this study. The above parameters give rise to two
independent non-dimensional control parameters: the Reynolds number

Re =
U1δω

ν
(2.1)
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and the velocity ratio

γ =
U1

U2

. (2.2)

In the framework of linear stability theory, it is customary to use a modified velocity
ratio, Γ = (γ − 1)/(γ + 1), as in Monkewitz & Huerre (1982) for instance. Following
Michalke (1964) and many others, a hyperbolic base profile is taken to represent the
shear-layer profile, here at the inflow x = 0 of the computational box,

u = U (y) êx where U (y) =
U1 + U2

2
+

U1 − U2

2
tanh

(
y

δω

)
. (2.3)

In the following, all quantities are made non-dimensional with the maximum velocity
U1, the shear-layer thickness δω, and the constant density of the fluid ρ.

The continuity equation

∇ · u = 0 (2.4)

and the Navier–Stokes equations

∂t u + ∇ · (uu) = −∇p +
1

Re
�u (2.5)

are solved in a rectangular domain Ω of streamwise length L, transverse dimension
H , and spanwise width W ,

Ω := {(x, y, z) : 0 � x � L ∧ |y| � H/2 ∧ 0 � z � W} . (2.6)

In the spanwise direction, periodicity with wavelength W is assumed, i.e.

u(x + W êz, t) = u(x, t). (2.7)

The inflow condition at x = 0 consists of the tanh base flow (2.3) plus a periodic
fluctuation u
 := (u
, v
, w
),

u = U (y) + u
, v = v
, w = w
. (2.8)

The fluctuation is taken to be the spatially growing eigenmode of a linear stability
analysis of the mean inflow profile (see § 2.2). The fluctuation level is fixed such that
the maximum amplitude of the transverse velocity perturbation is 1% of the average
velocity Uc = (U1 + U2)/2 of both streams, i.e. maxy,z,t |v
| =0.01Uc. In the transverse
direction, a Dirichlet condition is enforced, i.e.

u(x, ±H/2, z, t) = U (±H/2) êx. (2.9)

This condition is consistent with the assumed base flow (2.3) at the inflow, but does
not include the inlet perturbation (2.8). Therefore, H has to be chosen sufficiently
large to avoid problems in the corners (x, y) = (0, ±H/2). The above ‘no-penetration’
condition also produces a streamwise pressure gradient because of the evolution of
the shear-layer thickness, which is minimal however if H is sufficiently large. The
transverse domain size was fixed at H = 20 after a parametric study which showed that
larger domain sizes had no noticeable impact on either the flow or on the Galerkin
model (Noack, Papas & Monkewitz 2002). The height chosen is comparable with the
domain chosen by Comte, Silvestrini & Bégou (1998) for a large-eddy simulation of a
turbulent mixing layer with the velocity ratio of 3:1. Their three-dimensional domain
is 14, 28, and 140 vorticity thicknesses high, wide, and long, respectively.

The streamwise length of the computational domain is taken to be L =30,
corresponding to about 2 Kelvin–Helmholtz instability wavelengths. This is long
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enough to capture the non-linear evolution of the flow, but short enough to avoid
the first vortex pairing as observed by Comte et al. (1998) at about 100 shear-layer
thicknesses.

At the outflow (x = L), finally, a convective boundary condition is employed,

∂t u + Uc êx · ∇u = 0, (2.10)

where the convection velocity Uc is the average (U1 + U2)/2 between the two streams.
This choice is motivated by the fact that neutral linear Kelvin–Helmholtz instability
waves propagate exactly with this speed while the spatially most amplified waves do
so approximately (Monkewitz & Huerre 1982). This boundary condition has been
successfully employed for wall-bounded shear flow in a long diffuser (Kaltenbach
et al. 1999) and numerous other configurations.

As an initial condition, the parallel tanh base flow (2.3) plus the spatially growing
eigenmode of § 2.2 is taken in the entire domain. Once initialized, the flow is found
to ‘forget’ the initial condition after few periods and converges rapidly to a periodic
solution.

For the reference simulation, a velocity ratio of U1/U2 = 3 is chosen. The velocity of
the lower stream is thus large enough to sweep away the vortices in the downstream
direction, but small enough to allow the vortices to evolve sufficiently within a
domain of ‘reasonable’ length. The Reynolds number is fixed at Re= 150, which is
large enough for the instability dynamics to be essentially inviscid, but small enough
to lead to a numerically significant dissipation in the domain.

The Navier–Stokes simulation is performed in primitive variables on a staggered
grid with 100, 150, and 40 cells in the streamwise, transverse, and spanwise directions,
respectively. The streamwise and spanwise grid is equidistant, while the transverse
grid is more dense in the shear-layer region. The Navier–Stokes terms are computed
with a fourth-order-accurate finite-difference scheme. The temporal evolution employs
a pressure-correction step and is second-order accurate. The spatial and temporal
discretization orders were chosen according to a recommendation by Rempfer (2003)
for the simulation of transitional flow. This choice was found to be a good compromise
between accuracy and computational cost.

2.2. Linear stability analysis

A local linear stability analysis of the tanh base flow (2.3) is described which serves
two purposes in the present study. On the one hand, the spatially growing eigenmode
defines the periodic fluctuation for the inflow condition (2.8) of the simulation.
Implicitly, the perturbation upstream of the computational box, therefore, is modelled
with a linear spatial instability wave. On the other hand, the stability analysis allows
the computed downstream evolution to be compared with linear stability and the role
of nonlinearity to be assessed.

The local linear stability analysis is performed on the parallel tanh shear-layer
profile (2.3). The eigenmode of the spatially growing fluctuation is characterized
by its temporal period T , its streamwise and spanwise wavelengths λx and λz,
respectively, and the streamwise spatial growth rate σ . These quantities correspond to
the wavenumbers α =αr + iαi = 2π/λx − iσ and β = 2π/λz, and the angular frequency
ω =2π/T . The fluctuation is written in normal-mode form

u
 = φ(y) exp[i(αx + βz − ωt)], (2.11)

with the vector-valued complex amplitude function φ. This eigenmode (2.11) must
satisfy the incompressibility condition and the Navier–Stokes equation, linearized



344 B. R. Noack, P. Papas and P. A. Monkewitz

Parameter αr −αi β ω

u

2D 0.4070 0.0845 0 0.2685

u

3D 0.4150 0.0464 0.4070 0.2685

Table 1. Characteristic parameters of the two eigenmodes.

around the parallel base flow (2.3). The eigenmodes are computed with a standard
shooting method. Details are provided in Papas, Monkewitz & Tomboulides (1999)
and Papas et al. (2003).

Two particular eigenmodes are considered. The most amplified two-dimensional
perturbation u


2D with β = 0 is used as inflow condition for the laminar shear layer of
§ 3. A three-dimensional perturbation u


3D is used for the transitional shear layer in
§ 4. The frequency ω3D of the three-dimensional eigenmode is taken to be equal to the
frequency of the two-dimensional eigenmode ω2D and the spanwise wavenumber is
chosen as β3D = αr,2D. The characteristic parameters of the eigenmodes are shown in
table 1. Note that the spatial growth of any three-dimensional eigenmode is usually
smaller than that of the most amplified two-dimensional mode – as suggested by the
Squire theorem.

2.3. Galerkin model

The starting point of the proposed Galerkin model is the ‘standard’ empirical Galerkin
method, which we briefly summarize for later reference (see e.g. Holmes et al. 1998).
The Galerkin approximation of the flow is based on the inner product in the space
of square-integrable vector fields on the domain Ω , defined as

(v, w)Ω :=

∫
Ω

dV v · w, (2.12)

where · denotes the Euclidean product in three-dimensional Cartesian space. The
corresponding norm is defined by

‖v‖Ω :=
√

(v, v)Ω. (2.13)

It should be noted that the total kinetic energy of the vector field v is given by
the norm ‖v‖2

Ω/2. In the following, the symbol ‖ ‖ without a subscript is reserved
for the Euclidean norm in three-dimensional Cartesian space. In addition to these
spatial operators, the Reynolds-average operator is denoted by 〈 〉 (see the definition
in Monin & Yaglom 1971). This operator represents a time-average in this study, but
may also represent an ensemble-average of a transient phenomenon.

The velocity field of an empirical Galerkin model is approximated by the averaged
flow u0 = 〈u〉 plus an expansion with N Karhunen–Loève modes ui , i = 1, . . . , N ,

u[N](x, t) :=

N∑
i=0

ai(t) ui(x), (2.14)

where a0 ≡ 1 and with the expansion coefficients ai := (u − u0, ui)Ω for i > 0. The
Karhunen–Loève modes are orthogonal with respect to the inner product (2.12),

(ui , uj )Ω = δij , i, j = 1, 2, . . . , N, (2.15)



Pressure-term representation in empirical Galerkin models 345

where δij is the Kronecker symbol. The energy content of each mode is determined
by the Karhunen–Loève eigenvalue,

λi =
〈
(u − u0, ui)

2
Ω

〉
=

〈
a2

i

〉
, i = 1, 2, . . . , N. (2.16)

More generally, the first and second moments of the expansion coefficients satisfy

〈ai〉 = 0, 〈ai aj 〉 = λi δij , i, j = 1, 2, . . . , N. (2.17)

The Karhunen–Loève modes are computed with the snapshot method of Sirovich
(1987). The snapshots are sampled equidistantly within the period T , as usual in
periodic flows (see e.g. Deane et al. 1991 and Ma & Karniadakiks 2002). Numerical
studies by the present authors reveal that the first N Karhunen–Loève modes (N
even) resolve the first N/2 temporal harmonics, and can be computed from only
2N snapshots. This choice corresponds to four samples in the period of the highest
resolved harmonic (N/2). An increase to 4N or 8N samples does not have any visible
effect on the modes or resulting models. In the current study, 64 snapshots are taken.
Deane et al. (1991) studied the periodic cylinder wake and used M = 20 snapshots to
extract N = 8 Karhunen–Loève modes for the first four harmonic frequencies. This
number of snapshots is 4 above the lower bound of 2 N = 16.

We emphasize that the base flow u0 used in (2.14) is the time-averaged flow
and the corresponding expansion coefficient therefore remains unity, i.e. a0 ≡ 1. The
present study does not adopt a time-dependent u0 derived from Reynolds-stress
considerations (see e.g. Aubry et al. 1988). That ansatz rests on a time-scale separation
between fluctuations and base flow which is not justified for the present time-periodic
shear layers. However, in Appendix D and also in a study of turbulent mixing layers
(Noack et al. 2004b), the present authors have chosen an alternative to the use
of a time-dependent u0, which consists of incorporating additional Reynolds stress
contributions such as the shift mode (Noack et al. 2003) in the Galerkin expansion.

The evolution equation for the expansion coefficients in the Galerkin approximation
(2.14) are derived by a Galerkin projection. The resulting Galerkin system is

d

dt
ai =

1

Re

N∑
j=0

lij aj +

N∑
j=0

N∑
k=0

qijk aj ak + f π
i (a) for i = 1, . . . , N, (2.18)

with coefficients lij := (ui , �uj )Ω and qijk := (ui , ∇ · (uj uk))Ω . The unresolved projec-
tion of the pressure term

f π
i := (ui , −∇p)Ω (2.19)

is based on an approximation of the pressure field p which is consistent with the
Galerkin expansion (2.14). This pressure term is modelled in the next section. The
need to model this term has already been anticipated by Holmes et al. (1998) from a
Fourier space representation (see their equation 4.55).

The volume integral associated with the coefficients lij is transformed with Green’s
formula to reduce the differentiation order from 2 to 1. Thus, the differentiation
order of the Galerkin system coefficients for the viscous and the convective term does
not exceed unity. A projection of the Galerkin ansatz onto the vorticity equation
(see e.g. Rempfer 1991) removes the pressure term but leads to Galerkin system
coefficients with a differentiation order of 3. That order can be reduced to 2 by using
the same Green’s formula. The accuracy of the Galerkin system tends to decrease with
increasing differentiation order in the integrals for the coefficients of the dynamical
system. Although a differentiation order of 2 or more may not cause accuracy
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problems with smooth data from high-order direct numerical simulations, the authors’
experience indicates that it can affect the viscous term representation in the case of
snapshots from second-order-accurate large-eddy simulation data.

2.4. Pressure model

For many ‘closed’ flows, the pressure term (2.19) is exactly zero (see, for instance,
Holmes et al. 1998). An example is the model by Moehlis et al. (2002) for turbulent
Couette flow with periodic boundary conditions in the streamwise and spanwise
directions and a steady Dirichlet boundary condition in the wall-normal direction.
For finite-domain approximations of open flows, however, the pressure integral
generally does not vanish and may not even be negligible. In a recent wake model,
Galletti et al. (2004) postulate a linear relationship between the pressure term and
the expansion coefficients which they derive from a solution matching procedure.

The pressure term is also not negligible for the present Galerkin model of a purely
convectively unstable shear layer for which an a priori model of the pressure integral
in (2.19) is proposed.

The pressure-Poisson equation is given by

�p = −
3∑

l=1

3∑
m=1

∂lu
m ∂mul

︸ ︷︷ ︸
=:s

, (2.20)

where ul is the lth Cartesian component of the velocity vector u and ∂l the partial
derivate in the l-direction. The source term on the right-hand side will be denoted by
s. To simplify the presentation, a homogeneous Neumann boundary condition for the
pressure is assumed for the moment, i.e. the normal derivative of p in the outward
direction n vanishes on the whole domain boundary ∂Ω ,

∂np = n · ∇p = 0. (2.21)

The boundary value problem (2.20), (2.21) uniquely determines the pressure field up
to a constant. Using the Galerkin approximation (2.14), the source term s (2.20) can
be expressed as

s =

N∑
j=0

N∑
k=0

sjk aj ak (2.22)

where

sjk = −
3∑

l=1

3∑
m=1

∂lu
m
j ∂mul

k.

Here, the subscript indices j and k denote the expansion modes and the superscript
indices l and m refer to the Cartesian component of the vector. The solution of the
pressure-Poisson equation (2.20) can thus be expanded as

p =

N∑
j=0

N∑
k=0

pjk aj ak, (2.23)

where the partial pressures pjk satisfy

�pjk = sjk (2.24)

and the Neumann condition (2.21).
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Using (2.23), the Galerkin projection of the pressure term (2.19) can now be
expressed in terms of the expansion coefficients

(ui , −∇p)Ω = −
(

ui ,

N∑
j=0

N∑
k=0

∇pjk aj ak

)
Ω

=

N∑
j=0

N∑
k=0

qπ
ijk aj ak, (2.25)

where qπ
ijk := −(ui , ∇pjk)Ω .

In summary, the proposed pressure model leads to an additional quadratic term in
the Galerkin system (2.18),

d

dt
ai =

1

Re

N∑
j=0

lij aj +

N∑
j=0

N∑
k=0

(
qijk + qπ

ijk

)
aj ak for i = 1, . . . , N, (2.26)

which does not change its form. This remains true for a large class of boundary
conditions, as shown in Appendix A. This pressure model consisting of (2.23),
(2.26) will be called analytical since the Karhunen–Loève decomposition is the only
empirical information employed. However, the model is not tied to the Karhunen–
Loève decomposition and may be based on any other Galerkin approximation. For
all Galerkin models discussed in this paper, the numerical values of the coefficients
lij , qijk and qπ

ijk can be found on the website of the first author: http://vento.pi.tu-
berlin.de/ts/noackbr/brn.html

A numerical realization of the pressure-term representation is detailed in
Appendix B. In addition, an empirical model is proposed in Appendix C in which
the linear term of the analytical representation is fitted from snapshot pressure data.
No additional pressure-Poisson solutions are needed for the latter approach.

2.5. Energy-flow analysis

Generalizing a framework established by Rempfer (1991), the total and modal energy
balance equations are derived. The derivation is based on the Reynolds decomposition
of the flow u into a mean flow u0 and a fluctuation u′,

u = u0 + u′ (2.27)

of transient flow. For convenience, the fluctuation is assumed to be represented exactly
by a finite Galerkin approximation,

u′ =

N∑
i=1

ai ui . (2.28)

This assumption can later be relaxed by taking the limit N → ∞.
The total energy balance equation for the domain is obtained by multiplying the

Navier–Stokes equation (2.5) with u′, integrating over the domain and manipulating
the terms (see, for instance, Monin & Yaglom 1971). The evolution of the turbulent
kinetic energy, defined by

K = 1
2
〈(u′, u′)Ω〉 =

∫
Ω

dV 1
2
〈‖u′‖2〉, (2.29)

satisfies the energy balance equation

d

dt
K = P + D + C + T + F, (2.30)
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where the production P, the dissipation D, the convection term C, the transfer term
T, and the pressure power F are

P = −〈(u′, ∇ · (u′u0))Ω〉 = −
∫

Ω

dV

3∑
l=1

3∑
m=1

〈u′,lu′,m〉∂mul
0,

D =
1

Re
〈(u′, �u′)Ω〉 =

1

Re

∫
Ω

dV 〈u′ · �u′〉,

C = −〈(u′, ∇ · (u0u′))Ω〉 = −
∫

∂Ω

dA · u0
1
2
〈‖u′‖2〉,

T = −〈(u′, ∇ · (u′u′))Ω〉 = −
∫

∂Ω

dA ·
〈
u′ 1

2
‖u′‖2

〉
,

F = −〈(u′, ∇p)Ω〉 = −
∫

∂Ω

dA · 〈u′p′〉.

Typically, D is decomposed into a volume and a surface integral (see for instance
Monin & Yaglom 1971). This is not done in the present study, since no additional
insight is gained from this decomposition.

Analogously, a balance equation for the ith Karhunen–Loève mode is derived. The
Navier–Stokes equation is multiplied with the Galerkin contribution ai ui as opposed
to the complete fluctuation u′. This projection uses the Galerkin system (2.18), the
Galerkin approximation (2.28), the attractor properties (2.17), and leads to

d

dt
Ki = Pi + Di + Ci + Ti + Fi , (2.31)

with

Ki = 1
2

〈(
aiui ,

N∑
j=1

aj uj

)
Ω

〉
= 1

2
λi ,

Pi = −
〈(

aiui , ∇ ·
(

N∑
j=1

aj uj u0

))
Ω

〉
= qii0λi ,

Di =
1

Re

〈(
aiui , �

N∑
j=1

aj uj

)
Ω

〉
=

1

Re
liiλi ,

Ci = −
〈(

aiui , ∇ ·
(

u0

N∑
j=1

aj uj

))
Ω

〉
= qi0iλi ,

Ti = −
〈(

ai ui , ∇ ·
(

N∑
j=1

aj uj

N∑
k=1

ak uk

))
Ω

〉
=

N∑
j=1

N∑
k=1

qijk〈aiajak〉,

Fi = −〈(aiui , ∇p)Ω〉 =

N∑
j=0

N∑
k=0

qπ
ijk〈aiajak〉.

Note that the pressure-power term contains products with a0 = 1, i.e. this term could
be decomposed into a quadratic and a cubic term, while the linear term vanishes due
to (2.17).
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(a) (b)

(c) (d )

(e) ( f )

Figure 2. Navier–Stokes simulation for the reference conditions: streamlines (a, c, e) and
iso-vorticity contours (b, d, f ) of the instantaneous flow (a, b), the time-averaged flow (c, d),
and of the instantaneous fluctuation (e, f ). The displayed region is the computational domain
0 � x � 30, −10 � y � 10.

For the time-averages, the left-hand side of (2.31) vanishes, and the remaining
equation may be considered as a Kirchhoff rule for the energy flow to each mode –
in analogy to the currents in an electric network. It should be noted that the
formulation guarantees the additivity of the modal contributions to the total of each
term in (2.30),

K =

N∑
i=1

Ki , P =

N∑
i=1

Pi , D =

N∑
i=1

Di , C =

N∑
i=1

Ci , T =

N∑
i=1

Ti , F =

N∑
i=1

Fi .

(2.32)

3. The two-dimensional laminar shear layer
In this section, the two-dimensional laminar shear layer is studied. In § 3.1, the

Navier–Stokes solution is computed and analysed. A low-dimensional model of this
simulation is proposed in § 3.2. In § 3.3, an energy-flow analysis elucidates the observa-
tions of § 3.2.

3.1. Navier–Stokes simulation

Figure 2 displays the Navier–Stokes solution, including its Reynolds decomposition.
Since the averaged flow remains nearly parallel, the fluctuation level can be considered
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Figure 3. Streamwise evolution of the turbulent kinetic energy (3.1). The thick curve
corresponds to the reference simulation of figure 2. The thin straight line is the exponential
spatial growth associated with the linear instability of the inlet profile.

to be small. Furthermore the fluctuation streamlines and iso-vorticity curves closely
resemble those of the linear eigenmode used as inflow boundary condition (see § 2.2).
The spatial growth of the fluctuation is characterized by the streamwise evolution of
the turbulent kinetic energy, integrated across the shear layer

K(x) :=

∫
dy 1

2
〈‖u′(x, y, t)‖2〉. (3.1)

As it should be, the spatial growth of the fully nonlinear simulation initially agrees
well with the prediction of linear stability theory for the inflow profile (see figure 3).

It should be borne in mind that the flow under consideration is purely convectively
unstable and has no regions of absolute instability – in contrast to some wall-bounded
shear layers (Wee et al. 2002). This property qualifies the flow for parabolized stability
approaches (Bertolotti, Herbert & Spalart 1992), but no global empirical Galerkin
models seem to exist without simplifying assumptions, e.g. streamwise periodicity, and
without heuristic elements, e.g. additional eddy viscosities.

3.2. Galerkin model

In the following, two Galerkin models are compared: model A with the pressure term
neglected, and model B with the proposed analytical pressure representation.

In figures 4 and 5, the modes and corresponding eigenvalues of the Karhunen–Loève
decomposition are displayed. The modes form pairs (u1, u2), (u3, u4), etc., with similar
energy, frequency and streamwise wavenumbers. The energy decreases from pair to
pair in a rapid geometric progression, and the frequency and wavenumber of the nth
mode pair (u2n−1, u2n) are nω and nα of the Kelvin–Helmholtz wave, respectively.
More precisely, the transverse velocity fluctuation of modes i = 1, 2, 3, 4, . . . are locally
well approximated by the travelling waves cos(ωt − αx), sin(ωt − αx), cos 2(ωt − αx),
sin 2(ωt − αx), etc.

The first four modes already contain 99.99% of the total turbulent kinetic
energy. This high accuracy of the low-dimensional flow representation is due to
the small amplitude of the primary Kelvin–Helmholtz wave which barely excites
higher harmonics. For periodic shear flows with an absolute instability, the accuracy
tends to be smaller, but is still surprisingly high. An example is the laminar vortex
shedding behind the circular cylinder at Re= 100, where six modes are needed for a
99.96% resolution of the turbulent kinetic energy (Deane et al. 1991).
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Figure 4. Streamlines of the first eight Karhunen–Loève modes of the reference simulation
displayed in figure 2. Positive (negative) values of the streamfunction are indicated by thick
(thin) lines. The displayed region is the computational domain 0 � x � 30, −10 � y � 10.
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Figure 5. Karhunen–Loève eigenvalues λi as function of the mode number i.
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Figure 6. The attractors of Galerkin models A (�) and B (�). The solid line represents
the Navier–Stokes simulation.
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Figure 7. The first four expansion coefficients a1 (�), a2 (�), a3 (�), and a4 (�) of Galerkin
model B versus time measured in periods T . The solid lines represent the Navier–Stokes
simulation.

The results suggest a truncation of the Galerkin approximation at N = 4. Figure 6
displays the attractors of the Galerkin systems A and B. While system B accurately
reproduces the limit cycle of the Galerkin approximation of the Navier–Stokes
solution, the amplitude of system A is more than three times too large. It may not
be surprising that a Galerkin system is more accurate if the full evolution equation
including the pressure term is incorporated, but such a large effect of neglecting
the pressure term has, to our knowledge, not been reported previously. It will be
elucidated later in the framework of an energy-flow analysis (§ 3.3).

Figure 7 illustrates the temporal behaviour of Galerkin system B. The Galerkin
solution is seen to coincide perfectly with the corresponding expansion coefficients of
the Navier–Stokes simulation. The temporal evolution of the first four coefficients is
consistent with the travelling wave picture mentioned above, where a1, a2, a3, a4 have
frequencies ω, ω, 2ω, 2ω, respectively, with a 90◦ phase shift within each pair.
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Figure 8. Histogram with the time-averaged total energy contributions of, from left to right,
production P, dissipation D, convection C, transfer T, pressure power F and their sum
P + D + C + T + F.

The focus of the present study is on modelling the limit-cycle dynamics. A numerical
investigation of the two- and three-dimensional shear layers indicates that the limit
cycle has a large range of attraction in Galerkin phase space. Any transient Galerkin
solution approaches that limit cycle, provided that the initial condition is not orders of
magnitude away from the attractor. The transient times, however, are unrealistically
large. This aspect is briefly discussed in Appendix D and will be the subject of
a separate publication. The transient behaviour can be properly described in the
framework of empirical Galerkin models at the expense of significantly increasing
the number of modes (Ma & Karniadakis 2002; Jørgensen, Sørensen & Brøns 2003;
Noack et al. 2003; Bergmann, Cordier & Brancher 2004). The proposed pressure-
term representation can also be incorporated in these empirical Galerkin models,
generalized for transient dynamics, since the kinematics is still described by the
Galerkin ansatz (2.14).

3.3. Energy-flow analysis

A total and modal energy-flow analysis of the Navier–Stokes solution, as described
in § 2.5, is carried out. The corresponding analysis of the Galerkin model with N =4
yields almost identical results.

In figure 8, the five contributions to the change of turbulent kinetic energy are
visualized for the periodic flow. The production is the only source of energy. About
82% of this energy flow is convected across the domain boundary, about 9% is
dissipated and about 9% is lost across the boundary by pressure power. The transfer
term is negligible. The large loss due to convection characterizes convectively unstable
flow. In contrast, convection is small for equilibrium wall-bounded flows, e.g. channel
flow. The dissipation and pressure power are equally important as energy sinks. This
explains why neglecting the pressure term in Galerkin model A gives rise to larger
amplitudes. It is noted that even small neglected energy terms can give rise to large
changes in the Galerkin solutions, since all energy terms (except for the transfer term)
scale with the square of the amplitude. The transfer term has a damping effect, since
it transfers energy from the first to higher harmonics where the energy dissipation
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Figure 9. Modal energy-flow diagram of the laminar shear layer involving the first two pairs
of Karhunen–Loève modes, the average flow u0 and thermal energy T . The arrows point in
the direction of the energy flow. The kind of the energy flow is denoted by the four rectangular
boxes, in which the total transferred percentages are indicated. On the left, it is also indicated
which energy exchanges across the boundary correspond to surface or volume integrals.

is more efficient. Thus, the transfer term becomes more important when the higher
harmonics are excited.

The above energy terms are decomposed into their modal contributions in figure 9.
Here, the mode pairs (u2n−1, u2n) with the same frequency are grouped into two
compound modes u1,2 and u3,4. For instance, the production due to u1,2 is P1 + P2.
The total energy terms are quantified in the boxes of figure 8. These terms are the
sums of the modal contributions indicated by arrows away from or towards the boxes,
depending on the sign of the contributions. According to the Kirchhoff-type rules
(2.30), (2.31), the sum of all total energy-flow terms, as well as the corresponding sum
for each mode, must vanish.

The transfer term from modes u1,2 to u3,4 is simply the sum T1 +T2 or −T3 −T4,
since the higher-order modes play no role. In general, however, the energy transfer
results from a triadic interaction, i.e. involves three (compound) modes and cannot
be represented as easily by an arrow.

Figure 9 reveals that the contribution of u3,4 to each total energy-flow term is less
than 1% of the total production. Yet, these modes cannot be neglected in the Galerkin
model without inducing severe inaccuracies (see Noack et al. 2002). This sensitivity is
consistent with the observation that a high-order numerical accuracy is required for the
Navier–Stokes simulation, the Galerkin approximation, and the Galerkin projection.

The energetic terms of modes 3 and 4 increase with the fluctuation level, since the en-
ergy transfer from modes 1 and 2 is enhanced by nonlinearity. However, the important
role of the pressure term is also observed at larger fluctuation levels. Raising the inflow
fluctuation by a factor of 5 increases the pressure power by 377%. When normalized
with the production, however, the pressure power decreases by 49.6%. This decrease
seems mostly caused by the near saturation of the Kelvin–Helmholtz vortices at the
outflow boundary and less related to the increased nonlinearity. Current investigations
of direct numerical simulations of laminar and transitional cylinder wakes as well
as large-eddy simulations of turbulent mixing layers indicate a strong correlation



Pressure-term representation in empirical Galerkin models 355

between the pressure power and the growth of the fluctuation at the outflow
boundary.

In summary, the energy-flow analysis elucidates which terms of the Navier–Stokes
equation play an energetically important role, and which modes are needed to resolve
the energy flows with a given accuracy.

4. Three-dimensional transitional shear layer
As a next step, the low-dimensional modelling procedure is generalized to three-

dimensional shear layers. The organization of this section is analogous to the previous
one.

4.1. Navier–Stokes simulation

The inlet condition for the three-dimensional Navier–Stokes simulation is the most
amplified spatially growing linear eigenmode described in § 2.2. This eigenmode is a
Kelvin–Helmholtz wave travelling in an oblique direction about 46◦ away from the
free-stream direction. For reasons of symmetry, this oblique wave may be inclined in
the positive or negative spanwise direction, i.e. (2.11) gives rise to two modes denoted
by the superscripts ±:

u±(x, y, z, t) = φ±(y) exp[i(αx ± βz − ωt)].

As inlet fluctuation, the sum of both eigenmodes, corresponding to a stationary
spanwise modulation of the inlet perturbation, is chosen

u
 = ABC(u+ + u−). (4.1)

The amplitude ABC is normalized to yield a fluctuation with a maximum transverse
velocity of 0.01 Uc in analogy to § 3. This choice of boundary condition gives rise
to the well-studied spanwise cells of Kelvin–Helmholtz-like vortices with adjacent
cells of opposite phase. These particular cells have been chosen to make the inlet
condition sufficiently different from the two-dimensional case. The goal here is to
monitor the effect of three-dimensionality on the Galerkin model and on the energy
flows. Figure 10 depicts a snapshot of the Navier–Stokes solution which preserves
the time-periodicity of the inlet condition in the domain considered. The spatial
growth of this solution follows the predictions of linear stability theory over one
Kelvin–Helmholtz wavelength before nonlinear effects decrease the growth further
downstream – in analogy to § 3.

4.2. Galerkin model

Again, the Galerkin models A and B without and with pressure-term representation
are compared for the three-dimensional simulation of § 4.1.

In analogy to the corresponding two-dimensional flow, the Karhunen–Loève decom-
position of the simulation leads to pairs of modes. As before, the nth pair resolves the
nth harmonic nω with characteristic streamwise wavenumber of nα. The Karhunen–
Loève modes are composed of Fourier modes in the spanwise direction with zero
spanwise average, and hence produce a spanwise variation of the mean flow by
nonlinear interactions. The first two modes are found to resolve 99.4% of the turbulent
kinetic energy. The residual energy of a four-mode expansion is less than 0.5 × 10−6.

Figure 11 displays the attractors of Galerkin models A and B. The latter system
again follows the Navier–Stokes solution with high accuracy: better than 1 × 10−6 in
terms of fluctuation amplitude and frequency. Unlike the two-dimensional case, the
omission of the pressure-term representation now leads to an amplitude error of only
12% compared to a factor of 3.
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Figure 12. Same as figure 9, but for the three-dimensional shear layer.

Apparently, three-dimensionality mitigates the role of the pressure term in the
Galerkin model. The same tendency is observed with increased levels of fluctuation,
either by adopting larger inlet perturbations or by increasing the streamwise domain
size. This tendency may explain why Wee et al. (2002) can neglect the pressure term
for the flow over a backward-facing step at a Reynolds number of 5000. The reason
for the difference between two- and three-dimensional flows is elucidated by the
energy-flow consideration of the following section.

4.3. Energy-flow analysis

The result of the modal energy-flow analysis is visualized in figure 12. The relative en-
ergy flows between the modes are comparable with their two-dimensional analogues in
figure 9. In both cases, the production associated with the second mode pair (i =3, 4)
is about three orders of magnitude smaller than that of the first pair (i = 1, 2). More-
over, the production of the second pair is negative, for which no explanation can be
offered at this point.

The dissipation plays a larger role than in the two-dimensional flow due to spanwise
‘friction’ between neighbouring cells of opposite phase. The pressure power still acts
as an energy sink. Yet, its magnitude decreases from 9.2% in § 3 to only 1.0% of the
total production. This change reflects the fact that the omission of the pressure term
leads to an error which is one order of magnitude smaller than in the two-dimensional
case. In other simulations with different domains and different inlet conditions, the
relative error of the Galerkin model A has been found to be strongly correlated with
the relative role of pressure power.

The reduced surface integral of pressure power in the three-dimensional case
corresponds to a significantly reduced pressure fluctuation level. Loosely speaking,
this may be explained by the fact that less pressure gradient is required to ‘push’
fluid from one point to another because fluid motion is no longer constrained to
the (x, y)-plane. In contrast, the fluctuation level of the streamwise velocity at the
outflow differs by less than 10% between the two- and three-dimensional shear layers.
To a much lesser extent, the pressure power is also reduced by a somewhat lower
correlation between pressure and velocity fluctuations at the outflow.
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5. Conclusions
In the present study, the role of the pressure integral in empirical Galerkin models

of standard, spatially evolving shear layers is investigated. To be able to truncate
the model at very low order (at 4 modes), the inlet fluctuation level was chosen
sufficiently small so that a nonlinear numerical Navier–Stokes simulation initially
follows the exponential growth of the linear instability wave used as an inflow
condition.

The simulation is subjected to a low-dimensional Karhunen–Loève decomposition
and a detailed energy-flow analysis for each mode and each Navier–Stokes term. Based
on the Karhunen–Loève decomposition, an empirical Galerkin model is formulated
with and without pressure-term representation. The role of the pressure term in open
flows has been elucidated by a number of authors. One heuristic approach consists
of adding heuristic forcing terms to the Galerkin projection of the Navier–Stokes
equation (see, for instance, Aubry et al. 1988). An often practised approach consists of
‘escaping’ into the pressure-free vorticity transport equation (Rempfer 1991; Noack &
Eckelmann 1994). This avoidance of the pressure modelling task has two costs. First,
the energy residuum of the Navier–Stokes simulation is unknown and cannot be used
to assess the quality of the simulation and the Galerkin model. Second, the numerical
errors are increased due to the higher-order spatial derivatives and the mass-matrix
for the temporal vorticity derivative.

The Karhunen–Loève decomposition of the two- and three-dimensional shear layers
considered here yields pairs of modes, with the first pair resolving more than 99%,
and the first two pairs more than 99.9% of the turbulent kinetic energy in both cases.
This justified the truncation of the model at two pairs of modes. The analysis of
the total energy flow of each type has elucidated the role of production, dissipation,
convection, transfer and pressure power. As in non-equilibrium spatially evolving
flows, the only source of turbulent kinetic energy is the production, and the dominant
energy ‘sink’ is the convection out of a finite domain.

The principal finding of the study is that the pressure power can be as important
as dissipation. If a representation of the pressure term is incorporated in the model,
very accurate results are obtained for the relatively simple shear layer considered
here with only four Karhunen–Loève modes. The lack of a pressure-term model, on
the other hand, typically gives rise to important amplitude errors which cannot be
compensated by an increase in the number of modes. The amplitude error can be one
or two orders of magnitude larger than the relative energy-term error. Neglecting the
second pair of Karhunen–Loève modes which resolves less than 1% of all energy-
flow terms (compared to total production) even gives rise to a diverging Galerkin
solution. Furthermore, truncation errors of the second-order spatial discretization
of the Navier–Stokes simulation or the Galerkin projection easily accumulate to a
∼1% energy residuum in the total balance equation of turbulent kinetic energy. The
large sensitivity of the Galerkin solution to small neglected energy flows may be a
characteristic feature of purely convectively unstable shear layers. According to the
authors’ experience, the sensitivity is typically smaller for other flows. For absolutely
unstable wake flows, for instance, the relative amplitude error is comparable to the
relative level of unresolved fluctuation energy.

In summary, the main methodological contribution of the present study is an
analytically derived pressure-term representation for empirical Galerkin models. This
pressure model does not require additional empirical information and does not change
the form of the Galerkin system.
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The secondary finding of this study concerns the effect of three-dimensionality,
which appears to have a mitigating effect on the error made by neglecting the
pressure term. Thus, omission of the pressure term leads to larger-amplitude errors
in Galerkin solutions for two-dimensional flow. In addition, large fluctuation levels
at the inflow have also been seen to reduce the error of the limit-cycle amplitude.
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Appendix A. Analytical pressure model for general boundary conditions
In this section, the form of the analytical pressure model is shown to be preserved

for a large class of boundary conditions. At a stationary wall, for instance, the
boundary condition can be derived from the Navier–Stokes equation,

∂np =
1

Re
n · �u. (A 1)

Substitution of (2.14) in (A 1) leads to an inhomogeneous Neumann condition

∂np =

N∑
j=0

sj aj , (A 2)

where sj = Re−1 n · �uj . The linear inhomogeneity of (A 2) with respect to a seems to
be inconsistent with the simultaneous quadratic dependency of the pressure expansion
on the expansion coefficients. Fortunately, this inconsistency can be removed by
transforming (A 2) with a trick of analytic geometry,

∂np = (1, a1, . . . , aN )




s0
1
2
s1 · · · 1

2
sN

1
2
s1 0 · · · 0
...

. . .
...

1
2
sN 0 · · · 0







1
a1

...
aN


 . (A 3)

Now, the pressure expansion (2.23), the pressure source term (2.22), and the von
Neumann inhomogeneity of (A 3) are quadratic forms in a = (1, a1, . . . , aN ). The
following boundary condition for the partial pressure pjk:

∂npjk =




s0 if j, k = 0,
1
2
sj if j > 0, k = 0,

1
2
sk if j = 0, k > 0,

0 if j, k > 0,

(A 4)
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implies that the expansion (2.23) satisfies the boundary condition (A 3), or, equiva-
lently, (A 2).

The most general boundary condition for the pressure in a stationary domain can
be derived from the Navier–Stokes equation,

∂np = n · ∇p = n ·
[

−∂t u − ∇ · (uu) +
1

Re
�u

]
. (A 5)

For a steady realization of this boundary condition, the construction of partial
pressures, which respect this boundary condition and the quadratic form of the
pressure model, follows along the same lines. For the unsteady convective outflow
condition, the time-derivative of the velocity in (A 5) has to be replaced using (2.10).
The Galerkin representation of the resulting term again assumes the desired quadratic
form. The incorporation of different boundary conditions in the same pressure model
is readily carried out since the form does not change.

Appendix B. Numerical computation of the analytical pressure model
In this Appendix, a numerical algorithm for the computation of the pressure model

is proposed. This algorithm has several advantages over the direct computation of
the partial pressures. In fact, the pressure model is obtained using the same pressure-
correction step as the Navier–Stokes solver.

Let p0 be the pressure associated with the base flow u = u0, p
±
j be associated with

u±
j = u0 ±uj , j = 1, 2, . . . , N and p0

jk correspond to u0
jk = u0 +uj +uk , 1 � j < k � N .

Note that each of these velocity fields satisfies the boundary condition of the direct
numerical simulation with suitable amplitude and phase of the inlet condition. Hence,
each associated pressure field can be computed from a pressure-correction step,
advancing the phase in proportion to the chosen time step.

The pressure integral (2.25) yields N 2 (N + 1)/2 equations,

qi := (ui, −∇p0)Ω = qπ
i00

q
±
ij := (ui, −∇p

±
i )Ω = qπ

i00 ± qπ
i0j + qπ

ijj ,

q0
ijk :=

(
ui, −∇p0

jk

)
Ω

= qπ
i00 + qπ

i0j + qπ
i0k + qπ

ijj + qπ
ikk + qπ

ijk,

where the quantities qi , q
±
ij , and q0

ijk have been introduced for convenience. Thus, a

linear system of equations for N2 (N + 1)/2 coefficients is defined, assuming qπ
ijk = 0

at j > k.
These coefficients can be obtained from a simple recursion scheme at i = 1, 2, . . . , N ,

j = 1, 2, . . . , N and k = j, j + 1, . . . , N:

qπ
i00 = qi,

qπ
i0j =

q+
ij − q−

ij

2
,

qπ
ijj =

q+
ij + q−

ij

2
− qi,

qπ
ijk = q0

ijk − qπ
i00 − qπ

i0j − qπ
i0k − qπ

ijj − qπ
ikk.

This recursion procedure has several advantages over the direct partial-pressure
computation: First, the recursion procedure does not require the development of
another Poisson solver in addition to that of the pressure-correction scheme. Second,
the analytical formulation of a different boundary condition does not need to be
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re-considered, since the quadratic form is rigorously derived. And finally, the direct
computation is numerically found to be not well-conditioned for iteration schemes.
Instead of over-relaxation schemes, inefficient under-relaxation techniques have to
be employed. The efficiency and accuracy of the recursion procedure is found to be
significantly better.

As an aside, the computation of Galerkin coefficients lij , qijk + qπ
ijk with volume

integrals can be completely avoided by a variant of the recursion procedure based
on a one step-Navier–Stokes solver iteration. The first author has successfully carried
this out for diffuser flow (Narayanan et al. 1999).

Appendix C. Numerical computation of an empirical pressure model
In this Appendix, another pressure model is proposed for the case in which the

snapshots contain pressure fields and in which no Poisson equation is to be solved.
This variant is based on the observation that the omission of the quadratic terms in
ai , i = 1, . . . , N , in the pressure-force representation (2.19) leads to negligible error. It
should be noted here that a0 a0 = 1 is a constant and a0ai = ai , i = 1, . . . , N , a linear
term.

Let um, m =1, 2, . . . , M , represent the velocity snapshots, pm the corresponding
pressure fields, and am

i = (um − u0, ui)Ω the corresponding expansion coefficients. The
ansatz of the empirical approach is given by

(ui , −∇p)Ω =

N∑
j=0

lπ
ij aj . (C 1)

Substituting pm and am
j for all snapshots m =1, . . . , M in (C 1) leads to a linear

system for the N+1 coefficients lπ
ij . Typically M � N and the system is overdetermined.

Linear regression yields the coefficients. Alternatively, (2.17) can be employed to derive
analytical formulae for lπ

ij upon multiplication of (C 1) with ai . These formulae are
exactly valid if the snapshots for the fit have also been employed for the construction
of the Karhunen–Loève modes.

Galerkin systems with empirical and analytical pressure models have numerically
been found to have comparable accuracies for the flows presented. The linear
dependency agrees with a local linear stability analysis. For laminar and transitional
absolutely unstable cylinder wake flows, the approximation for the empirical variant
is still acceptable for an <1% amplitude error. It should be noted that the fluctuation
level behind a cylinder wake is about one order of magnitude larger than in the
shear-layer configurations presented.

In a recent study of wake flows, Galletti et al. (2004) use the same ansatz (C 1) for
the pressure term. In that study the coefficients lπ

ij are determined from an optimization
problem which minimizes the error between the Galerkin solution and the Navier–
Stokes simulation. The present empirical approach minimizes the error between the
pressure term in primitive variables and in the Galerkin model representation. By
construction, the term of Galletti et al. (2004) is more accurate in the short term
whereas the present term is more forgiving of long-term phase errors.

Appendix D. Transient dynamics
In this brief Appendix, the transient dynamics of the shear layer and the low-

dimensional modelling process is discussed. This outline parallels an investigation of
a transient cylinder wake by Noack et al. (2003).
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(a) (b)

Figure 13. Simulation of a transient shear layer. (a) Instantaneous fluctuation streamlines
at time t/T = 11/8, where T is the period. (b) Shift mode which is added to the Galerkin
approximation (2.14) as fifth mode and describes the difference between the initial parallel
flow and the averaged post-transient flow, modulo the orthonormal correction with respect to
the first Karhunen–Loève modes.

The parallel flow with tanh profile (2.3) is chosen as initial condition. This
velocity field is a steady solution of the Navier–Stokes equation for vanishing inflow
perturbations and Re → ∞. At the Reynolds number considered here, (2.3) is still
a good approximation of the steady solution, since the diffusive self-similar growth
of a steady shear layer (cf. Noack et al. 2002) is much smaller than the growth of
the averaged unsteady flow.† The initial condition is incorporated in the Galerkin
approximation (2.14) as an additional shift mode u� (see figure 13b) – in complete
analogy to the wake model of Noack et al. (2003). This mode describes the effect of
the Reynolds stress on the mean flow.

The oscillation of the purely convectively unstable shear layer is introduced as
inflow condition – in contrast to the oscillatory wake which is self-excited due to
an absolute instability. The Kelvin–Helmholtz vortices are generated at the inflow
and grow as they convect downstream. The first vortex created after the start of the
simulation generates, by the Bio-Savart law, a ‘downwash’ because of the missing
contributions from downstream vortices (see figure 13a). This truncation effect is
apparently not described in the Galerkin approximation based on the periodic flow –
even if the shift mode is included. This transient phenomenon leads to a large
unresolved residual fluctuation in the Galerkin approximation (see figure 14a). The
transient time is about 3 periods and ends when the first vortex has crossed the outflow
boundary. The expansion coefficients (see figure 14b) show the growth of the osci-
llation and the quick convergence of the shift-mode amplitude a� to its asymptotic
value 0.

The evolution of the expansion coefficients is described by two Galerkin models:
the representation of § 3 (see figure 15a) and a description enriched by the shift
mode (figure 15b). Both models include the analytical pressure-term representation.
The Galerkin systems qualitatively reproduce the transient dynamics, in particular
the faster convergence of the shift mode to its asymptotic value compared to the
saturation of the oscillation (see figure 15b). However, the time scales for convergence
are two orders of magnitudes too large. The reason is related to the large residuum of
the Galerkin approximation. The 5-dimensional Galerkin approximation adequately

† The self-similar solution is not adopted as initial condition since it does not exactly satisfy the
Dirichlet condition of the Navier–Stokes simulation.
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Figure 14. Galerkin approximation for the transient simulation of figure 13. (a) Energy
residuum R of the 5-dimensional Galerkin approximation, normalized with the averaged
post-transient fluctuation energy K, versus time non-dimensionalized with the period T .
(b) Temporal evolution of the expansion coefficients a1 (thin curve) and a� (thick curve). The
snapshot of figure 13 has been taken at the instant of maximum residuum.
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Figure 15. Transient solution of the Galerkin model. (a) 4-dimensional Galerkin approxima-
tion of § 3. (b) Same representation enhanced by the shift mode of figure 13. The initial
conditions of the Galerkin solutions correspond to the transient flow of figure 13. The shaded
zone shows the envelope of a1. Solid curve: Shift-mode amplitude a� vanishing identically by
construction (a) or converges to 0 (b).

describes travelling waves, even with varying amplitudes, but individual convective
vortices are not well-represented. In order to improve the transient behaviour of the
model, many more modes are necessary. These may be extracted from a transient
simulation following the recipes of Jørgensen et al. (2003). Alternative approaches
based on enriched snapshot ensembles are described by Ma & Karniadakis (2002)
and Bergmann et al. (2004)

The shift mode is seen to have an accelerating effect on the transient dynamics com-
pared to the Galerkin model of § 3 (see figure 15). However, the effect is much weaker
than in the wake model of Noack et al. (2003), since the production of wake vortices
is more strongly dependent on the base flow which is modified by the shift mode.
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